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Introduction

Prerequisites: In order to make the most of this resource, you need to know about trigonometry,
di�erentiation, integration and complex numbers.

We are looking at equations involving a function y(x), its �rst derivative and second derivative:

a
d2y

dx2
+ b

dy

dx
+ cy = f(x) (1)

We will only look at equations where the coe�cients a, b and c are constant; we will not treat in
this handout the case of coe�cients which are functions of x.

Homogeneous Equations

If f(x) = 0 then the ODE is called an homogeneous equation. To solve a second order homogeneous

ODE, we look at the characteristic equation, obtained by replacing
d2y

dx2
,
dy

dx
and y by r2, r and 1

in the ODE:
ar2 + br + c = 0

We distinguish between 3 cases: the case when the roots of the characteristic equation are distinct
and real, complex or equal.

Case 1: real and distinct roots r1 and r2

Then the solutions of the homogeneous equation are of the form:

y(x) = Aer1x + Ber2x

The constants A and B can be anything you like if there are no boundary conditions. If you have
boundary conditions, e.g. you know that y(x0) = α and y′(x0) = β, then A and B will be uniquely
de�ned by:

Aer1x0 + Ber2x0 = α

Ar1e
r1x0 + Br2e

r2x0 = β

Example
d2y

dx2
+ 5

dy

dx
+ 6y = 0

The characteristic equation is: r2 + 5r + 6 = 0 and the roots are
−5±

√
25− 4× 6

2
= −3 or −2.

Therefore the solutions of the ODE are:

y(x) = Ae−3x + Be−2x
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Case 2: complex roots

If the roots are complex then they can be written as r + js and r− js (with j the imaginary number,
j2 = −1) and the solutions of the homogeneous equations are of the form:

y(x) = erx
(
Aejsx + Be−jsx

)
which can also be written as = erx (Ccos(sx) + Dsin(sx))

As before, the constants A and B (or C and D) will be de�ned by the boundary conditions.

Example
d2y

dx2
+ 4

dy

dx
+ 9y = 0

The characteristic equation is: r2 + 4r + 9 = 0 and the roots are
−4±

√
16− 4× 9

2
= −2 +

√
5j or

−2−
√
5j. Therefore the solutions of the ODE are:

y(x) = e−2x
(
Ae
√
5xj + Be−

√
5xj
)

or = e−2x
(
Ccos (

√
5x) + D sin (

√
5x)
)

Case 3: equal roots r1=r2=r

If the characteristic equation has one root only then the solutions of the homogeneous equation are
of the form:

y(x) = Aerx + Bxerx

Example
d2y

dx2
+ 4

dy

dx
+ 4y = 0

The characteristic equation is: r2 + 4r + 4 = 0 e.g. (r + 2)2 = 0 and its root is -2. Therefore the
solutions of the ODE are:

y(x) = Ae−2x + Bxe−2x

Second Order ODEs with Right-Hand Side

If the right-hand side in Equation (1) is not 0, then the solutions can be found as follows:

� First, �nd the form of the solution of the corresponding homogeneous equation keeping the
constants A and B as such: this is called the complementary solution yc(x);

� Second, �nd a particular integral of the ODE yp(x).

Then the solutions of the ODE are of the form: y(x) = yc(x) + yp(x). At this point only, you may
determine the constants A and B from the boundary conditions.

There are two methods to �nd a particular integral of the ODE: the method of undetermined
coe�cients and the method of variation of parameters.
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Undetermined coe�cients

This method consists in making an educated guess as to what the particular integral should look
like. The following table can be used:

f(x) particular integral

k C

kx Cx + D

kx2 Cx2 +Dx + E

k sin x or k cos x C cos x + D sin x

k sinh x or k cosh x C cosh x + D sinh x

ekx Cekx

erx, where r is a root of the
characteristic equation

Cxerx or Cx2erx

The constants C and D are found by `plugging' the particular integral in the ODE, which will lead
to conditions that de�ne C and D.

Example
d2y

dx2
− 5

dy

dx
+ 6y = 2 sin 4x

We �rst �nd the complementary solution of the ODE. The characteristic equation is r2− 5r+ 6 = 0

and the roots are
5±
√
25− 4× 6

2
= 3 or 2. Therefore the complementary solution is:

yc(x) = Ae3x + Be2x

Then, we �nd a particular integral of the ODE. Since the right-hand side contains a sin 4x, we look
for a particular integral in the form yp(x) = C cos 4x + D sin 4x. We want yp to be solution of the
ODE so we must have:

d2yp
dx2
− 5

dyp
dx

+ 6yp = 2 sin 4x

We have:

dyp
dx

= −4C sin 4x + 4D cos 4x

d2yp
dx2

= −16C cos 4x− 16D sin 4x

Putting back in the ODE:

(−16C cos 4x− 16D sin 4x)− 5 (−4C sin 4x + 4D cos 4x) + 6 (C cos 4x + D sin 4x) = 2 sin 4x

Re-arranging cos and sin:

(−16C− 20D + 6C) cos 4x + (−16D + 20C + 6D) sin 4x = 2 sin 4x

(−10C− 20D) cos 4x + (−10D + 20C) sin 4x = 2 sin 4x

The last equation must be true for any value of x, so we must have:{
−10C− 20D = 0

20C− 10D = 2

So: {
C = 2

25

D = − 1
25
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So a particular integral of the ODE is yp(x) =
2

25
cos 4x− 1

25
sin 4x and the general solutions of the

ODE are of the form:

y(x) =
2

25
cos 4x− 1

25
sin 4x + Ae3x + Be2x

Variation of parameters

This method is more general and will work for any function f(x) in the right-hand side of Equation
(1), although it may look intimidating at �rst sight! First let's rewrite the complementary solution
of the ODE in the form:

yc(x) = Ay1(x) + By2(x)

with y1(x) = er1x, y2(x) = er2x or xer1x if r1 = r2 with r1, r2 roots of the characteristic equation

Then a particular integral of Equation (1) is:

yp(x) = −y1(x)
∫

y2(x)f(x)

W(y1, y2)
dx + y2(x)

∫
y1(x)f(x)

W(y1, y2)
dx

with W the Wronskian: W(y1, y2) = y1(x)y
′
2(x)− y′1(x)y2(x)

Example
d2y

dx2
− 2

dy

dx
+ y =

ex

x2 + 1

First, let's �nd the complementary solution of the ODE. The characteristic equation is r2−2r+1 = 0,
e.g. (r− 1)2 = 0, so there is one root which is 1. The complementary solution is of the form:

yc(x) = Aex + Bxex

To �nd a particular integral of the ODE, we calculate the Wronskian:

with: y1(x) = ex and: y2(x) = xex

W(y1, y2) = y1(x)y
′
2(x)− y′1(x)y2(x)

= ex(1 + x)ex − exxex = e2x

Then a particular integral of the ODE is:

yp(x) = −ex
∫

xex

e2x
ex

x2 + 1
dx + xex

∫
ex

e2x
ex

x2 + 1
dx

= −ex
∫

x

x2 + 1
dx + xex

∫
1

1 + x2
dx∫

x

1 + x2
dx =

1

2
ln (1 + x2) and

∫
1

1 + x2
dx = arctan x

= −ex · 1
2
ln (1 + x2) + xex · arctan x

The general solution of the ODE is:

y(x) = Aex + Bxex − 1

2
ex ln (1 + x2) + xex arctan x
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Exercises

(a)
d2y

dx2
+ 7y = 0 (d)

d2y

dx2
+ 4

dy

dx
+ 5y = 2e−2x with y(0) = 1,

dy

dx
(0) = −2

(b)
d2y

dx2
+ 2

dy

dx
+ y = e−2x (e)

d2y

dx2
+ 4

dy

dx
+ 4y = 2 cos2 x

(c) 3
d2y

dx2
− 2

dy

dx
− y = 2x− 3 (f)

d2y

dx2
+ 2

dy

dx
+ y = 4 sinh x

Answers

(a) y = Aei
√
7x + Be−i

√
7x (d) y = e−2x(2− cos x)

or y = C cos (
√
7x) + D sin (

√
7x)

(b) y = Ae−x + Bxe−x + e−2x (e) y = (A + Bx)e−2x +
1

4
+

1

8
sin (2x)

(c) y = Aex + Be−1/3x − 2x + 7 (f) y = (A + Bx− x2)e−x +
1

2
ex
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