Elementary functions\Logarithms\Using rules
No |
Description |
Difficulty |
Syllabus |
Level |
1
| a log base 2/10(x)-log base 2/10(x-b)=log base 2/10(x-c); 2NI |
Intermediate |
A-level |
C3 |
Related material |
2
| a^x=b; find x to c dps; NI |
Intermediate |
A-level |
C3 |
Related material |
3
| b*log_a (x)+c*log_a (x)-d*log_a (ex); b,c,d,e +ve; MC |
Intermediate |
A-level |
C3 |
Related material |
4
| c loga (y)-b loga (x+d)=e loga (y)+loga (x); WI |
Intermediate |
A-level |
C3 |
Related material |
5
| c loga (y/x)-b loga (y/x+d)=e loga (y/x)+loga (y/x);implicit WI |
Intermediate |
A-level |
C3 |
Related material |
6
| ln(x+a)+ln(b)-cln(x); a,b,c +ve; MC |
Intermediate |
A-level |
C3 |
Related material |
7
| ln(x+a)/(x^b); a,b +ve; WI |
Intermediate |
A-level |
C3 |
Related material |
8
| ln_a(1/a^b); NI |
Intermediate |
A-level |
C3 |
Related material |
9
| ln_a(a^b); NI |
Easy |
A-level |
C3 |
Related material |
10
| Log base a (b) = c; a,b,c +ve; 3NI |
Easy |
A-level |
C3 |
Related material |
11
| Log_q(p) = r equivalent form; p,q given; 3NI |
Easy |
A-level |
C3 |
Related material |
12
| Log_q(p) = r equivalent form; p,q,r given; 3NI |
Easy |
A-level |
C3 |
Related material |
13
| Log_q(p) = r equivalent form; p,r given; 3NI |
Easy |
A-level |
C3 |
Related material |
14
| Log_q(p) = r equivalent form; q,r given; 3NI |
Easy |
A-level |
C3 |
Related material |
15
| Solve log_a(bx+c)-log_a(x)=d; 2NI |
Hard |
Undergraduate |
level 1 |
Related material |
16
| Solve log_a(bx-c)+log_a(x)=1; MC |
Easy |
Undergraduate |
level 1 |
Related material |
17
| Given y=log_a(x), write log_a(b/x^c) in terms of y; 2NI |
Hard |
Undergraduate |
level 1 |
Related material |
18
| Given y=log_a(x), write log_a(bx^c) in terms of y; 2NI |
Easy |
A-Level |
C2 |
Related material |
19
| Given p=log_a(b) and q=log_a(c), write log_a(b^d.c^e) in terms of p and q; 2NI |
Easy |
A-Level |
C2 |
Related material |
20
| Solve log_a(bx-c)+log_a(x)=1; WI |
Intermediate |
A-Level |
C2 |
Related material |